Abstract

Conventional hydrogen separations from reformed hydrocarbons often deploy a water gas shift (WGS) reactor to convert CO to CO2, followed by adsorption processes to achieve pure hydrogen. The purified hydrogen is then fed to a compressor to deliver hydrogen at high pressures. Electrochemical hydrogen pumps (EHPs) featuring proton-selective polymer electrolyte membranes (PEMs) represent an alternative separation platform with fewer unit operations because they can simultaneously separate and compress hydrogen continuously. In this work, a high-temperature PEM (HT-PEM) EHP purified hydrogen to 99.3%, with greater than 85% hydrogen recovery for feed mixtures containing 25–40% CO. The ion-pair HT-PEM and phosphonic acid ionomer binder enabled the EHP to be operated in the temperature range from 160 to 220 °C. The ability to operate the EHP at an elevated temperature allowed the EHP to purify hydrogen from gas feeds with large CO contents at 1 A cm–2. Finally, the EHP with the said materials displayed a small performance loss of 12 μV h–1 for purifying hydrogen from syngas for 100 h at 200 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.