Abstract
Electrochemical studies of a series of substituted phenanthroline-Co(II) complexes all show generally similar behaviour, namely a chemically and electrochemically reversible CoIII/II redox couple, as well as a chemically and electrochemically reversible CoII/I redox couple, followed by a ligand-based reduction. Electron donating- or -withdrawing substituents on the phenanthroline ligands which are coordinated to the Co metal, directly influence the electron density on the Co metal, due to good communication between these substituents and the Co metal via the aromatic rings of the heterocyclic substituted phenanthroline-Co(II) complexes, leading to either more negative (for electron donating groups) or more positive (for electron withdrawing groups) redox potentials respectively. Linear relationships relating E°′(CoIII/II) oxidation and E°′(CoII/I) reduction to various experimental and empirical values, as well as to theoretically calculated energies, show that the electron density on Co is linearly influenced by the electronic properties of the ligands attached to the Co metal. All these established relationships can be used in the design of new substituted phenanthroline-Co(II) complexes with specific customized redox properties as required, for example, for the application of such Co(II) complexes as redox mediator for dye-sensitized solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.