Abstract

Oil field produced water by separated with crude oil were treated by an electrochemical process in laboratory pilot-scale plant, using double anodes with active metal (M) and graphite (C) and iron as cathode and a noble metal content catalyst with big surface. Due to the strong oxidizing potential of the chemicals produced (Cl 2, O 2, OCl −, HO and so on), when the wastewater pass through the laboratory pilot-scale plant the organic pollutants including bacteria were oxidized and coagulated by produced M n+ ion. It can be concluded that the catalytic electrochemical treatment of oil field produced wastewater is effective. Both chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were reduced by over 90% in 6 min, suspense solids (SS) by 99%, Ca 2+ content by 22%, corrosion rate by 98% and bacteria (sulphate reducing bacteria (SRB), saprophytic bacteria (TGB) and iron bacteria) by 99% in 3 min under 15 V/120 A. These results indicate that this catalytic electrochemical method could be used for effective oil field wastewater treatment for injection purpose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.