Abstract

Potential noise records have been collected for 2024-T3 aluminum alloy, which was exposed to simulated acid rain with different pH value for 15 wet–dry cycles. Meanwhile, Potentiodynamic polarization and SEM techniques were also used as assistant measurements. Three mathematic methods including average, standard deviation and wavelet transformation have been employed to analyze the records. The results showed that each single wet–dry cycle can be divided into three regions with respect to the change of the cathodic reaction rate, and with the increase of pH value the main cathodic reaction changes from the reduction of protons to that of oxygen molecules. The analysis of the EDP versus time evolution clearly indicates that the whole corrosion process can be divided into three segments for the case of pH 3.5 and only one for the cases of pH 4.5 and 6.0, which have been theoretically interpreted according to the corrosion theory and experimentally proved by SEM. The results also showed that the corrosion in the case of pH 3.5 was much more rigorous than that in the cases of pH 4.5 and 6.0. It may due to synergistic effects of that, the characteristic of hydrogen ions which is much more active than that of oxygen molecules, the high diffusion/migration rate of hydrogen ions in solution or through surface films and the lower stability of surface passive film at low pH value system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.