Abstract

Blood capillaries deliver oxygen and nutrients to surrounding micro-regions of tissue and carry away metabolic waste. In normal tissue, capillaries are close enough to keep all the cells viable. In solid tumours, the capillary system is chaotic and typical inter-capillary distances are larger than in normal tissue. Therefore, hypoxic regions develop. Drug molecules may not reach these areas at concentrations above the lethal level. The combined effect of low drug concentrations and local hypoxia, often exacerbated by acidity, leads to therapy failure. To better understand the interplay between hypoxia and poor drug penetration, oxygenation needs to be assessed in different areas of inter-capillary tissue. The multicellular tumour spheroid is a well-established three-dimensional (3D) in vitro model of the capillary microenvironment. It is used to mimic nascent tumours and micro-metastases as well. In this work, we demonstrate for the first time that dynamic intra-spheroidal oxygen maps can be obtained at the 3D multicellular tumour hemi-spheroid (MCH) using a non-invasive microelectrode array. The same oxygen distributions exist inside the equivalent but less accessible full spheroid. The MCH makes high throughput-high content analysis of spheroids feasible and thus can assist studies on basic cancer biology, drug development and personalized medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.