Abstract

The manufacturing of lithium-ion batteries (LIB) requires critical materials such as cobalt (Co) and lithium (Li) that are essential for clean-energy products including electric vehicles. Because of their rapidly increasing demand and limited supply, the recycle and reuse of these materials from end-of-life LIB have garnered a lot of interest. Electrochemical leaching has emerged as a sustainable method to extract critical materials out of LIB, so life cycle assessment was conducted to compare the environmental impacts with traditional peroxide-based leaching and another emerging technology – SO2-based leaching. The results showed that electrochemical leaching reduces the global warming potential (GWP) by 80%−87% compared to peroxide-based leaching due to a lower acid consumption, avoidance of hydrogen peroxide, and regeneration of reducing agent iron (II) sulfate and compares well with SO2-based leaching in most impact categories. The analysis suggested renewable energy can further reduce the environment footprint of electrochemical leaching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.