Abstract

Studies of the catalytic properties of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans by protein film voltammetry, under a H2 atmosphere, reveal and establish a variety of interesting properties not observed or measured quantitatively with other techniques. The catalytic bias (inherent ability to oxidize hydrogen vs reduce protons) is quantified over a wide pH range: the enzyme is proficient at both H2 oxidation (from pH > 6) and H2 production (pH < 6). Hydrogen production is inhibited by H2, but the effect is much smaller than observed for [NiFe]-hydrogenases from Allochromatium vinosum or Desulfovibrio fructosovorans. Under anaerobic conditions and positive potentials, the [FeFe]-hydrogenase is oxidized to an inactive form, inert toward reaction with CO and O2, that rapidly reactivates upon one-electron reduction under 1 bar of H2. The potential dependence of this interconversion shows that the oxidized inactive form exists in two pH-interconvertible states with pK(ox) = 5.9. Studies of the CO-inhibited enzyme under H2 reveals a strong enhancement of the rate of activation by white light at -109 mV (monitoring H2 oxidation) that is absent at low potential (-540 mV, monitoring H+ reduction), thus demonstrating photolability that is dependent upon the oxidation state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.