Abstract

This paper presents a novel and versatile method for the fabrication of half nanotubes (HNTs) using a flexible template-based nanofabrication method denoted as electrochemical imprinting. With use of this method, polycrystalline nickel and nickel(II) oxide (Ni-NiO) HNTs were synthesized using pulsed electrodeposition to transfer Ni, deposited by radio frequency magnetron sputtering on a porous polytetrafluoroethylene template, onto a boron-doped diamond (BDD) film. The Ni-NiO HNTs exhibited semicircular profiles along their entire lengths, with outer diameters of 50-120 nm and inner diameters of 20-50 nm. The HNT walls were formed of Ni and NiO nanoparticles. A biosensor for the detection of L-serine was fabricated using a BDD electrode modified with Ni-NiO HNTs, and the device demonstrated satisfactory analytical performance with high sensitivity (0.33 μA μM(-1)) and a low limit of detection (0.1 μM). The biosensor also exhibited very good reproducibility and stability, as well as a high anti-interference ability against amino acids such as L-leucine, L-tryptophan, L-cysteine, L-phenylalanine, L-arginine, and L-lysine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.