Abstract

State of health (SOH) is critical to the efficient and reliable use of lithium-ion batteries (LIBs), especially in electric vehicle (EV) applications. Recently, electrochemical impedance spectroscopy (EIS)-based technique has been proven to be effective for SOH estimation of LIB. However, existing EIS-based methods failed to consider the impact of ambient temperature and battery state of charge (SOC), leading to the limited flexibility of these methods under dynamic environments. In this work, a novel EIS-based method is proposed for battery SOH estimation considering variations of temperature and SOC. An equivalent circuit model (ECM) is first introduced, in which the solid electrolyte interface (SEI) resistance and charge transfer resistance are employed to map their relationship with SOH under variant temperature and SOC. Subsequently, a probabilistic model, taking charge transfer resistance, temperature, and SOC as input variables, is developed for LIB SOH estimation. Experimental study indicates that the estimation error of the proposed method is around 4% when simultaneously considering the temperature and SOC effects. Moreover, the estimation error can reach 1.29% under certain conditions (e.g., 80% SOC at 30 °C). Both results of estimation error are better than the existing EIS-based methods, which indicates that the proposed method is more flexible for SOH estimation with higher precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.