Abstract

The melt-spinning technique is applied to the preparation of the nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg20Ni10-xMnx (x=0, 1, 2, 3, 4). The microstructures of the as-cast and spun alloys were characterized by XRD and HRTEM. The electrochemical performances of the as-spun alloys are measured by an automatic galvanostatic system. The results show that the as-spun Mg20Ni10 alloy displays an entire nanocrystalline structure, whereas the as-spun Mg20Ni6Mn4 alloy exhibits a nanocrystalline and amorphous structure, confirming that the substitution of Mn for Ni facilitates the glass formation in the Mg2Ni-type alloy. And the amorphization degree of the as-spun alloys substituted by Mn increases with the growing of the spinning rate. The substitution of Mn for Ni and the melt spinning ameliorate electrochemical hydrogen storage characteristics of the alloys substantially. The electrochemical discharge capacity and cycle stability of the alloys are considerably enhanced by increasing the amount of Mn substitution and the spinning rate. The high rate discharge ability (HRD) of the alloys first augments and then falls with the growing of the Mn content and the spinning rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.