Abstract

Application of mixed ruthenium oxide hexacyanoferrate/ruthenium hexacyanoferrate glassy carbon electrode for electrochemical determination of dopamine (DA) is described for the first time. The overlapped voltammetric oxidation potentials of ascorbic acid (AA) and DA are separated and shifted to more facile direction, +170 and +320 mV versus Ag/AgCl, respectively. Voltammetric response of the electrode toward the DA showed a dynamic calibration curve with two linear parts, from 0.50 to 10.00 μM and 25.00 to 550.00 μM DA, and a detection limit of 0.195 μM. The sensitivity (0.2917 μA/μM) and detection limit (0.195×10−7 μMDA) of this electrode are 21 times higher and 11.5 times lower than those found in our previous paper. The sensor response of 9.95 μMDA was not affected by 5.0 mM of glucose, 4.5 mM of fructose, 0.58 mM of sucrose, 0.28 mM of cystine, 0.25 mM of ascorbic acid, 79.60 μM of cysteine, and 49.70 μM of uric acid and urea. The fabricated sensor was successfully tested for determination of DA in injection medicine and human blood plasma samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.