Abstract

A novel vanadium oxide polypropylene carbonate modified glassy carbon electrode was developed and used for the measurement of ascorbic acid (AA). The electrode was prepared by casting a mixture of vanadium tri(isopropoxide) oxide (VO(OC 3H 7) 3) and poly(propylene carbonate) (PPC) onto the surface of a glassy carbon electrode. The electrochemical behavior of the VO(OC 3H 7) 3–PPC film modified glassy carbon electrode was investigated by cyclic voltammetry and amperometry. This modified electrode exhibited electrocatalytic response to the oxidation of ascorbic acid. Compared with a bare glassy carbon electrode, the modified electrode exhibits a 220 mV shift of the oxidation potential of ascorbic acid in the cathodic direction and a marked enhancement of the current response. The response current revealed a good linear relationship with the concentration of ascorbic acid in the range of 4 × 10 −8 and 1 × 10 −4 mol L −1 and the detection limit of 1.5 × 10 −8 mol L −1 ( S/ N = 3) in the pH 8.06 Britton–Robinson solution. Quantitative recovery of the ascorbic acid in synthetic samples has been obtained and the interferences from different species have been studied. The method has been successfully applied to the determination of ascorbic acid in fruits. The concentrations of ascorbic acid measured by this method are in good agreement with the literature value. It is much promising for the modified films to be used as an electrochemical sensor for the detection of ascorbic acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.