Abstract
Here, a sensitive sandwich-type electrochemical biosensor for microRNA-21 detection was reported. It was based on the use of a Au NP functionalized graphite-like carbon nitride nanosheet (g-C3N4 NS) nanohybrid (Au NPs-g-C3N4 NS) as a sensing platform and DNA concatemers containing methylene blue (MB) as a signal probe. The signal probe was prepared by using two different single strand DNAs with a complementary sequence (one of them labeled with MB at the 3' end) to form long concatemers via continuous hybridization chain reaction (HCR); thus numerous MB signal molecules were loaded on long concatemers. The biosensor was fabricated following the next step: a thiolated hairpin probe (HP) was first immobilized on the surface of the glassy carbon electrode (GCE) modified with a Au NPs-g-C3N4 NS nanohybrid. After it was blocked with MCH, the modified electrode was sequentially hybridized with microRNA-21 and a signal probe, respectively. As a result, a sandwich structure of HP-microRNA-signal probe covered the surface of the modified electrode. Differential pulse voltammetry (DPV) was employed to measure the sensing signal in phosphate buffered solution (0.10 M PBS, pH 7.4). The experimental conditions were optimized such as the hybridization time and the amount of g-C3N4 NS. The proposed biosensor exhibited a wide linear response range (1.0 fM to 500 nM) and a low limit of detection (0.33 fM; at S/N = 3) under the optimal conditions. Meanwhile, the biosensor could discriminate single base mismatched microRNA-21, indicating that the biosensor possessed high selectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.