Abstract

Mesoporous ZnO films composed of interconnected porous nanoplates were prepared by an electrochemical deposition-pyrolytic conversion approach and constructed into the photoanodes of dyesensitized solar cells (DSSCs). Precursor nanoplates grown on conducting glass substrates were transformed into ZnO porous nanoplates by calcination at 400 °C for 1 h. Correlations between the ZnO film thickness and the electrochemical deposition time were determined in order to prepare ZnO films of various thicknesses and to study the effect of the film thickness on the photovoltaic performance of DSSCs. The optimal film thickness was determined to be approximately 27 μm, and the best performing cell reached an energy conversion efficiency of 2.91%. The results show that the ZnO porous nanoplate network so prepared is suitable for DSSC applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.