Abstract

The effect of solution composition and the type of the anionic species on the electrochemical formation of mixed-valent molybdenum oxide on a glassy carbon and ITO electrode surfaces was elucidated. Susccessive recording of the voltammograms has shown that anionic species display different stabilizing effect on the reductive formation of hydrogen molybdenum bronzes [MoO3−x (OH)x] and chloroacetic acid buffer has given the best results. The deposit was built upon cycling the potential between 0 and −0.9V (vs. Ag/AgCl) via reduction of Mo(VI) to Mo(V) on the electrode surface in pH 3.0 chloroacetic acid solution. Electrochemical impedance measurements carried out in this medium revealed a shift in potential zero charge values from -0.2V to -0.55V after the potential of the GCE had been cycled for 30min. An establishment of mixed-valent molybdenum oxide deposit by time on the gold electrode surface was proved by quartz crystal microbalance measurements. Atomic force and scanning electron microscopy techniques were made use of so as to characterize the surface structures of the electrodes. X-ray photoelectron spectroscopy studies confirmed that the deposit contains both Mo(V) and Mo(VI). The deposited films exhibited unique catalytic activity towards nitrite oxidation consistent with the change in peak characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.