Abstract

Electrochemical decarboxylation of acetic acid on boron-doped-diamond (BDD) electrodes was studied as a possible means to decrease the acidity of pyrolysis oil. It is shown that decarboxylation occurs without the competitive oxygen evolution reaction (OER) on BDD electrodes to form methanol and methyl acetate by consecutive reaction of hydroxyl radicals with acetic acid. The performance is little affected by the applied current density (and associated potential), concentration, and the pH of the solution. At current densities above 50 mA cm-2, faradaic efficiencies (FEs) of 90% towards the decarboxylation products are obtained, confirmed by in situ electrochemical mass spectrometry (ECMS) investigation showing only small amounts of oxygen formed by water oxidation. Using platinum-modified BDD electrodes, it is shown that selectivity to ethane, the Kolbe product, strongly depends on the shape and geometry of the platinum particles. Using nano-thorn-like Pt particles, a faradaic efficiency of approx. 40% towards ethane can be obtained, whereas 3D porous platinum nanoparticles showed high selectivity towards the OER. Using thin platinum layers, a high FE of >70% towards ethane was obtained, which is thickness-independent at layer thicknesses above 20 nm. Comparison with other substrates revealed that BDD is an ideal support for Pt functionalisation, giving advantages of stability and high-value-product formation (ethane and methanol). In short, this work provides guidelines for electrode fabrication in the context of the electrochemical upgrading of biomass feedstocks by acid decarboxylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.