Abstract

Single-entity electrochemistry, which employs electrolysis during the collision of single particles on ultramicroelectrodes, has witnessed significant advancements in recent years, enabling the observation and characterization of individual particles. Information on a single aqueous droplet (e.g., size) can also be studied based on the redox species contained therein. Dopamine, a redox-active neurotransmitter, is usually present in intracellular vesicles. Similarly, in the current study, the electrochemical properties of neurotransmitters in submicron droplets were investigated. Because dopamine oxidation is accompanied by proton transfer, unique electrochemical properties of dopamine were observed in the droplet. We also investigated the electrochemical properties of the adsorbed droplets containing DA and the detection of oxidized dopamine by the recollision phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.