Abstract
Growth of vertical, multiwalled carbon nanotubes (CNTs) on bulk copper foil substrates can be achieved by sputtering either Ni or Inconel thin films on Cu substrates followed by thermal chemical vapor deposition using a xylene and ferrocene mixture. During CVD growth, Fe nanoparticles from the ferrocene act as a vapor phase delivered catalyst in addition to the transition metal thin film, which breaks up into islands. Both the thin film and iron are needed for dense and uniform growth of CNTs on the copper substrates. The benefits of this relatively simple and cost effective method of directly integrating CNTs with highly conductive copper substrates are the resulting high density of nanotubes that do not require the use of additional binders and the potential for low contact resistance between the nanotubes and the substrate. This method is therefore of interest for charge storage applications such as double layer capacitors. Inconel thin films in conjunction with Fe from ferrocene appear to work better in comparison to Ni thin films in terms of CNT density and charge storage capability. We report here the power density and specific capacitance values of the double layer capacitors developed from the CNTs grown directly on copper substrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.