Abstract

Biodegradable alloys are very attractive biomaterials. Electrochemical impedance spectroscopy (EIS) and linear potentiodynamic polarization (LPP) techniques were used for the study of the electrochemical behavior of uncoated FeMnSi and coated FeMnSi with hydroxyapatite + zirconia (HA-ZrO2) through pulsed laser deposition (PLD) technique. Experiments were carried out using Hank’s balanced salt solution (HBSS). It has been shown that in HBSS the impedance for uncoated FeMnSi was mainly characterized by one capacitive effect, which related to the alloy charge transfer control. The charge transfer resistance increases for HA-ZrO2-coated FeMnSi alloy. The equivalent circuits simulating the electrochemical behavior of both uncoated and HA-ZrO2-coated FeMnSi alloys in HBSS were proposed. From LPP the corrosion resistance was evaluated by means of the zero current potential (ZCP) and corrosion current density (jcorr). The surface morphology of both uncoated and HA-coated FeMnSi alloys in HBSS obtained after LPP was studied using scanning electron microscopy (SEM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.