Abstract

Developing new materials for Li-ion and Na-ion batteries is a high priority in materials science. Such development always includes performance tests and scientific research. Synchrotron radiation techniques provide unique abilities to study batteries. Electrochemical cell design should be optimized for synchrotron studies without losing electrochemical performance. Such design should also be compatible with operando measurement, which is the most appropriate approach to study batteries and provides the most reliable results. The more experimental setups a cell can be adjusted for, the easier and faster the experiments are to carry out and the more reliable the results will be. This requires optimization of window materials and sizes, cell topology, pressure distribution on electrodes etc. to reach a higher efficiency of measurement without losing stability and reproducibility in electrochemical cycling. Here, we present a cell design optimized for nuclear resonance techniques, tested using nuclear forward scattering, synchrotron Mössbauer source and nuclear inelastic scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.