Abstract

The electrochemical properties of zopiclone, an anxiolytic and hypnotic drug, have been investigated by different techniques. The compound is reduced in two 2-electron steps in the pH range 0–12. The first step, which corresponds to the reduction of the pyrazine ring, is reversible in acidic and neutral solutions. Strong adsorption phenomena accompany the reduction process in acidic and neutral media. Zopiclone can be quantitatively measured over the entire pH range using DC polarography. However, the use of differential pulse and square-wave modes for quantitative measurements is more limited due to a slope modification in the current-concentration relationship. Adsorptive stripping voltammetry can be applied to the determination of low levels of the drug at pH 9, but only short deposition times may be used because large amounts of material accumulated under stirring conditions due to fast adsorption kinetics are rapidly released from the electrode surface. Detection limits are 1 × 10 −7 M and 2 × 10 −10 M for polarography and adsorptive stripping voltammetry, respectively. Only the first wave is of analytical interest for both techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.