Abstract

This research focused on analyzing the electrochemical properties of tantalum ions in NaCl-KCl molten salt during the extraction of tantalum and the synthesis of tantalum nano-powder. Tantalum ions were dissolved from the anode. Linear sweep voltammetry, cyclic voltammetry, square wave voltammetry, and chronoamperometry were employed to delve into the reduction and diffusion processes of tantalum ions. The study determined the diffusion coefficient, the nucleation process, and the deposition potential for tantalum ions. The findings revealed that the electrode reduction process of tantalum ions involved a three-step reaction: Ta5+→Ta3+→Ta+→Ta. This reaction was shown to be reversible and diffusion-controlled. The nucleation mode of tantalum ions was identified as instantaneous nucleation followed by progressive nucleation as the potential increased by chronoamperometry analysis. The cathodic deposition product was characterized using XRD, SEM, EDS, and TEM techniques, confirming the nanoscale granular nature and microstructure of the deposition products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.