Abstract
As a result of the toxic and corrosive nature of chlorine gas, simple methods for its detection are required for monitoring and control purposes. In this paper, the electrochemical behavior of chlorine on platinum working electrodes in the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) is reported, as a basis for simple sensor devices. Cyclic voltammetry (CV) and chronoamperometry (CA) on a Pt microelectrode revealed the two-electron reduction of Cl2 to chloride ions. On the CV reverse sweep, an oxidation peak due to the oxidation of chloride was observed. The reduction process was diffusion controlled at the concentrations studied (≤4.5% in the gas phase), in contrast to a previous report (J. Phys. Chem. C 2008, 112, 19477), which examined only 100% chlorine. The diffusion-controlled currents were linear with gas-phase concentration. Fitting of the CA transients to the Shoup and Szabo expression gave a diffusion coefficient for chlorine ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.