Abstract
Tripropylamine (TPA) has different oxidation efficiency at double stranded (ds)-and single stranded (ss)-DNA-modified electrodes. Using this property, a simple but sensitive biosensor using TPA oxidation to probe the intramolecular displacement was constructed with the analysis of lysozyme as model for the first time. After the complementary ss-DNA strand of anti-lysozyme aptamer was immobilized onto gold electrode via gold–thiol bond, the incubation with the aptamer resulted in the formation of ds-DNA. Lysozyme (in 10μL sample) binding with aptamer displaced the complementary strand because of the high affinity of lysozyme and its aptamer, corresponding to the dissociation of the ds-DNA. The modified electrode was swept in 20mM TPA solution from 0.2 to 0.95V. The difference in oxidation current was used to quantify the content of lysozyme with a linear range from 1.0pM to 1.1nM. That means 10amol or 6.0×106 lysozyme molecules can be detected. Because the signal is produced from the preconcentrated TPA at the electrode surface, the high sensitivity is achieved over the single site labelling strategy. The proposed method is simple, stable, specific, and time-saving while the complicated sample pre-treatment and the labelling to the DNA strand are avoided. The biosensor was validated by the analysis of the diluted egg white sample directly. The recovery and reproducibility were 93.3–100% and 1.4–4.2%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.