Abstract

In this paper, we developed an electrochemical, aptamer-based (E-AB) for the real-time monitoring of insulin. The sensor utilizes a redox label-modified guanine-rich aptamer which folds into a G-quadruplex for specific recognition of insulin. To develop a reproducible E-AB sensor employing insulin aptamer probes for the detection of insulin, 10% sodium dodecyl sulfate (SDS) pretreatment is crucial as it disrupts interstrand G-quartets. After sensor pretreatment with 10% SDS, a more uniform sensor response is obtained. Upon introduction of the insulin target, binding-induced steric hindrance quantitatively reduces the efficiency of electron transfer of a distal-end redox label leading to the rapid signal change within ∼60 s. Testing demonstrates that the E-AB insulin exhibits a limit of detection of 20 nM and can be used to discriminate against both glucagon and somatostatin in Krebs-Ringer bicarbonate buffer, typically used in perfusion experiments. These results demonstrate that this assay has potential for rapid, specific, and quantitative analysis of insulin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.