Abstract

The mechanism of oxidation of phenazine-di-N-oxide in the presence of isopropyl alcohol was studied by cyclic voltammetry at glassy carbon (GC) and single-walled carbon nanotubes (SWCNT) electrodes in 0.1M LiClO4 solutions in acetonitrile. The adsorption of phenazine-di-N-oxide at SWCNT electrode in 0.1M LiClO4 solution in acetonitrile was investigated by measurement of the dependence of the differential double layer capacitance of the electrode C on potential E. The effect of isopropyl alcohol on the shape of cyclic voltammograms (CVs) of phenazine-di-N-oxide and the intensity of Electron Paramagnetic Resonance (EPR) signal of its radical cation was investigated. The catalytic currents were recorded at the oxidation of phenazine-di-N-oxide at SWCNT and GC electrodes in the presence of isopropyl alcohol. The results were explained in terms of the E1C1E2C2 mechanism of two-stage electrode process characterized by catalytic current recorded at the second electrode stage. The overall two-electron catalytic oxidation of isopropyl alcohol in complex with the phenazine-di-N-oxide radical cation was assumed to occur. It was shown that SWCNT electrodes can be used in the electrocatalytic oxidation of organic compounds in the presence of electrochemically generated phenazine-di-N-oxide radical cation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.