Abstract

Iron oxides in general and especially hematite, α-Fe2O3, have become promising materials for the alkaline water electrolysis and photoelectrochemical water splitting, respectively. In the present study electrocatalytic electrodes with a thin film of α-Fe2O3 and with vertically aligned α-Fe2O3 nanowires were prepared. Cyclic voltammograms of the α-Fe2O3 nanowires revealed differences including a series of three unreported cathodic signals when compared to previously published voltammograms for polycrystalline iron oxides. The generation-collection mode of scanning electrochemical microscopy (SECM) using nanostructured Pt microdisc probes was exploited to detect soluble reaction products formed at the voltammetric peaks of the α-Fe2O3 electrode. SECM tip-substrate voltammetry unexpectedly showed that the reduction of FeVI to FeIII on the cathodic sweep is accompanied by significant O2 evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.