Abstract

In this paper, we found that (NH4)2V4O9 undergoes an electrochemical activation process in the first charging process at ∼1.4 V (vs. Zn2+/Zn), leading to a significant improvement of capacity and cycling stability. The activated vanadium oxides delivered a high specific capacity of 477 mA h g-1 at 50 mA g-1 and outstanding cycling stability with 97.7% capacity retention after 5000 cycles at 15 A g-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.