Abstract

A new complex formed by Cu(II) with 2-[bis(2-aminoethyl)amino]ethanol and imidazole is prepared, and its electrochemical properties are studied. The electrochemical experiments are carried out in deaerated pH 7.0 buffer solution through cyclic voltammetry by scanning the potential from 0.1 to −0.5 V with this copper(II) complex-modified electrode as the working electrode. One redox process is observed, which could be assigned to Cu(II)/Cu(I). The formal potential E 0′ = (E pa + E pc)/2, where E pa and E pc are anodic and cathodic peak potentials, is −248 mV vs. SCE. A straight line, obtained from the plot of I pc vs. v, indicated a surface-controlled reaction. The modified electrode is very stable and exhibits catalytic activity for oxygen reduction. The possible mechanism for the catalytic reduction of oxygen is studied by cyclic voltammetry and chronoamperometry. The results show that the dioxygen is reduced via a pathway of four-electron reduction to form water. Chronoamperometric measurements show the potentiality of the use of this working electrode as an amperometric sensor for dissolved dioxygen in aqueous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.