Abstract

Vanadium oxynitride and other earth-abundant oxynitrides are of growing interest for the electrocatalytic reduction of nitrogen to NH3. A major unresolved issue, however, concerns the roles of lattice N and lattice O in this process. Electrochemistry and photoemission data reported here demonstrate that both lattice N and dissolved N2 are reduced to NH3 by cathodic polarization of vanadium oxynitride films at pH 7. These data also show that ammonia production from lattice N occurs in the presence or absence of N2 and involves the formation of V≡N: intermediates or similar unsaturated VN surface states on a thin vanadium oxide overlayer. In contrast, N2 reduction proceeds in the presence or absence of lattice N and without N incorporation into a vanadium oxide lattice. Thus, both lattice N and N2 reduction mechanisms involve oxide-supported V surface sites ([V]O) in preference to N-supported sites ([V]N). This result is supported by density functional theory-based calculations showing that the formation of V≡N:, V-N═N-H, and a few other plausible reaction intermediates is consistently energetically favored at [V]O rather than at [V]N surface sites. Similar effects are predicted for the oxynitrides of other oxophilic metals, such as Ti.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.