Abstract
Nanoporous zinc oxide (ZnO) is prepared by a hydrothermal method followed by thermal decomposition for electrocatalytic reduction of CO2. In situ X-ray absorption spectroscopy results indicate that ZnO is reduced to Zn under the electrolysis conditions for catalyzing CO2 electroreduction. The reduced nanoporous ZnO exhibits obviously higher CO Faradaic efficiency and current density than commercial Zn foil with a maximum CO Faradaic efficiency of 92.0%, suggesting that the nanoporous structure facilitates electrocatalytic reduction of CO2 over reduced nanoporous ZnO, probably due to increased surface area and more coordination unsaturated surface atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.