Abstract

Spectroscopic and electrochemical investigation of electrocatalytic proton reduction by Fe(2)(mu-pdt)(CO)(6), 1, have been interpreted in terms of a reaction scheme involving sequential electron-proton reactions to give a two-electron, two-proton product that undergoes rate-limiting dihydrogen elimination. Further reduction, at slightly higher negative potentials, gives a more reactive product and this process dominates reactions conducted at higher acid concentrations. Inhibition of the electrocatalytic reaction by CO is due to the more efficient loss of catalyst and this is best modelled by a reaction that is second order in terms of 1(-). During electrocatalytic proton reduction a new species is observed, which features a bridging CO group and the wavenumbers of the nu(CO) modes of the terminally bound carbonyl groups are similar to those of the carbonyl groups bound to the oxidized form of the H-cluster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.