Abstract
Improving the catalytic activity of the anode catalyst is an important task in the direct formic acid fuel cell (DFAFC). In this study, the catalysts were prepared by dispersing either platinum or palladium metal on the surface of thiolated multi-walled carbon nanotubes (t-MWCNTs), denoted as t-MWCNT-Pt and t-MWCNT-Pd, respectively. These modified t-MWCNT and poly(diallyldimethylammonium chloride) (PDDA) were ultrasonically mixed and loading on a glassy carbon electrode (GCE) for formic acid (FA) oxidation and the catalytic activities were then investigated by using cyclic voltammetry (CV) and chronoamperometry (CA) methods. The as-formed catalysts were characterized by several methods. To optimize the catalytic performance, we investigated the catalysts separately and together (in different ratios) for FA oxidation. The PDDA mixed catalyst demonstrated a slightly better performance. These results indicated that the PDDA/(t-MWCNT-Pt + t-MWCNT-Pd) catalyst exhibited better activity than that of the corresponding other catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.