Abstract

Axion-like particles are predicted in many physics scenarios beyond the Standard Model (SM). Their interactions with SM particles may arise from the triangle anomaly of the associated global symmetry, along with other SM global and gauge symmetries, including anomalies with the global baryon number and electromagnetic gauge symmetries. We initiate the phenomenological study of the corresponding “electrobaryonic axion”—a particle that couples with both the baryon chemical potential and the electromagnetic field. Neutron stars, particularly magnetars, possessing high baryon density and strong magnetic fields, can naturally develop a thin axion hair around their surface. In this study, we calculate this phenomenon, considering the effects of neutron star rotation and general relativity. For axion particles lighter than the neutron star rotation frequency, the anomalous interaction can also induce the emission of axion particles from the neutron star. In the light axion regime, this emission can significantly contribute to the neutron star cooling rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.