Abstract

Nanoparticles are widely used as drug carriers, texturizing agents, fat replacers, and reinforcing inclusions. Because of a growing interest in non-renewable materials, much research has focused on nanocellulose derivatives, which are biodegradable, biocompatible, and easily synthesized. Among nanocellulose derivatives, nanocrystalline cellulose (NCC) has been known for half a century, but its utility is limited because its colloidal stability is challenged by added salt. On the other hand, electrosterically stabilized nanocrystalline cellulose (ENCC) has recently been observed to have superior colloidal stability. Here, we use electrokinetic-sonic-amplitude (ESA) and acoustic attenuation spectroscopy to assess NCC and ENCC ζ-potentials and sizes over wide ranges of pH and ionic strength. The results attest to a soft, porous layer of dicarboxylic cellulose (DCC) polymers that expands and collapses with ionic strength, electrosterically stabilizing ENCC dispersions at ionic strengths up to at least 200mmol L−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.