Abstract

In this study, a new composite of activated carbon cloth/graphene oxide (ACC/GO) was prepared, characterized and used as electrode material for the electro-assisted adsorptive removal of Co2+ and Cs+ from aqueous solution. The ACC/GO composite was synthesized by a vacuum filtration method, and characterized by cyclic voltammetry and various surface characterization methods. Effect of applied voltage and initial concentration of Co2+ and Cs+ on their removal efficiency was examined. The kinetics and isotherms of Co2+ and Cs+ adsorption were investigated to explain the adsorption mechanism. At 0 V, the removal efficiency of Co2+ and Cs+ was 10.1% and 21.4%; at 1.2 V, electro-assistance increased the removal efficiency of Co2+ and Cs+ to 40.8% and 39.7%, respectively. Moreover, ACC/GO composite electrode had higher adsorption capacity compared to the pristine ACC electrode, due to its higher specific surface area and more oxygen-containing functional groups. The maximum adsorption capacity of Co2+ and Cs+ was 16.7 mg g−1 and 22.9 mg g−1, respectively at 1.2 V and 20 mg L−1 by ACC/GO composite electrode. The modeling and experimental results demonstrated that the removal mechanism involved in physical adsorption, chemical adsorption, and electro-adsorption. Overall, the prepared ACC/GO composite electrode had high capacitive deionization performance in removing heavy metal ions from wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.