Abstract

Doped van der Waals heterostructures host layer-hybridized trions, i.e. charged excitons with layer-delocalized constituents holding promise for highly controllable optoelectronics. Combining a microscopic theory with photoluminescence (PL) experiments, we demonstrate the electrical tunability of the trion energy landscape in naturally stacked WSe2 bilayers. We show that an out-of-plane electric field modifies the energetic ordering of the lowest lying trion states, which consist of layer-hybridized Λ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Lambda$$\\end{document}-point electrons and layer-localized K-point holes. At small fields, intralayer-like trions yield distinct PL signatures in opposite doping regimes characterized by weak Stark shifts in both cases. Above a doping-asymmetric critical field, interlayer-like species are energetically favored and produce PL peaks with a pronounced Stark red-shift and a counter-intuitively large intensity arising from efficient phonon-assisted recombination. Our work presents an important step forward in the microscopic understanding of layer-hybridized trions in van der Waals heterostructures and paves the way towards optoelectronic applications based on electrically controllable atomically-thin semiconductors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.