Abstract

The recent discovery of two-dimensional (2D) magnetic materials has opened new frontiers for the design of nanoscale spintronic devices. Among 2D nano-magnets, bilayer CrI3 outstands for its antiferromagnetic interlayer coupling and its electrically-mediated magnetic state control. Here, leveraging on CrI3 magnetic and electrical properties, we propose a lateral spin-valve transistor based on bilayer CrI3, where the spin transport is fully controlled via an external electric field. The proposed proof-of-concept device, working in the ballistic regime, is able to both filter (>99%) and select ON/OFF the spin current up to a ratio of ≈102, using a double split-gate architecture. Our results obtained exploiting a multiscale approach ranging from first-principles to out-of-equilibrium transport calculations, open unexplored paths towards the exploitation of bilayer CrI3 or related 2D nano-magnets, as a promising platform for future electrically tunable, compact, and scalable spintronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.