Abstract
Semiconductor micro/nanowire is an attractive candidate for light-emitting devices (LED), especially laser diodes, due to its ideal geometric shape, excellent optical performance, and electrical transport properties. However, the realization of single micro/nanostructure semiconductor LED or lasers is still a challenge topic. In this Letter, we demonstrated a feasible route to fabricate electrically injection single microwire (MW) light-emitting devices. First, the excellent optical properties of single MW were investigated comprehensively, especially for the self-formed high-Q whisper gallery mode lasing. By properly engineering the band alignment of n-ZnO MW/p-GaN heterojunction using a dielectric MgO interlayer, the effective carrier injection and excitonic-type recombination electroluminescence was realized in the single MW active media. Our results present a significant step toward future fabrication of single micro/nanowire LED and laser diode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.