Abstract

The relaxation of a dual-frequency liquid crystal at the twist effect and the influence of the external electrical circuit parameters on the relaxation process in the case of a large initial inclination angle (44) of the director are studied. It is found that oscillation arising at the trailing edge of the modulator’s electro-optic response considerably increases the time of relaxation due to the action of a high-frequency electric field. The influence of the electric field on the relaxation time is stronger, the thinner the liquid crystal layer. It is experimentally shown that the duration of the interval between the removal of low-frequency voltage from and the application of high-frequency voltage to the modulator affects the relaxation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.