Abstract

Electrical fields are known to interact with human cells. This principle has been explored to regulate cellular activities for bone tissue regeneration. In this work, Saos-2 cells were cultured on conductive scaffolds made of biodegradable poly(L-lactide) and the heparin-containing, electrically conducting polypyrrole (PPy/HE) to study their reaction to electrical stimulation (ES) mediated through such scaffolds. Both the duration and intensity of ES enhanced cell proliferation, generating a unique electrical intensity and temporal "window" within which osteoblast proliferation was upmodulated in contrast to the downmodulation or ineffectiveness in other ES regions. The favourable ES intensity (200 mV/mm) was further investigated in terms of the gene activation and protein production of two important osteoblast markers characterised by extracellular matrix maturation and mineralisation, that is alkaline phosphatase (ALP) and osteocalcin (OC). Both genes were found activated and the relevant protein production increased significantly following ES. In contrast, ES in the down-modulation region (400 mV/mm) suppressed the production of both ALP and OC. This work demonstrated that important osteoblast markers can be modulated with specific ES parameters mediated through conductive polymer substrates, providing a unique strategy for bone tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.