Abstract

AbstractElectric relaxation in CeO2-M203 (M34 sY3+, La3+) solid solutions has been investigated as a function of temperature (373K-673K) using the electric modulus formalism in the frequency range 5 to 107Hz. Two relaxation processes are observed in dilute solid solutions. The low frequency process is identified as a long range migration of free oxygen-vacancies (Process A) and the high frequency process is due to reorientation relaxation of the (MceVo) charged associates (Process B). The relaxation process is analysed using a non-exponential decay function, ø(t)=exp[-(t/τo)B] for O<β≤1, of the electric field. The observed activation enthalpy minimum as a function of dopant concentration for the Process A is explained using the concept of incomplete dissociation of oxygen-vacancies from (MceVo) defect associates and the formation of higher-order defect clusters at higher mole% M203.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.