Abstract

Background and ObjectiveCardiac arrest (CA) remains a significant cause of death and disability. High-quality cardiopulmonary resuscitation (CPR) can improve the survival rate of CA. A challenging issue is to find physiological indicators for screening and evaluating the cardiovascular function associated with CPR. This study aimed to investigate the electrical-mechanical dynamic coupling between electrocardiographic (ECG) and photoplethysmographic (PPG) signals for indicating cardiovascular function in the progress of CPR. MethodThe ECG and PPG signals were simultaneously collected from a porcine CA model (n = 10) induced by ventricular fibrillation, and were further divided into four periods: Baseline, CA, CPR, and recovery of spontaneous circulation (ROSC). Recurrence quantitative analysis (RQA) was applied to examine the nonlinear dynamics of the ECG and PPG signals individually, and cross recurrence quantitative analysis (CRQA) was used to examine the ECG-PPG dynamical coupling. ResultsThe CA influenced the dynamic patterns of electrical and mechanical activities and the electrical-mechanical coupling, which can be observed from the reduced entropy (ENTR) (p < 0.01), reduced determinism (DET) (p < 0.01) and reduced trapping time (TT) (p < 0.01) at CA compared to Baseline. The recurrence rate (RR), ENTR, DET, and TT at CPR were significantly lower than the parameters at ROSC but higher than those at CA. ConclusionsThe electrical-mechanical dynamical coupling was sensitive to CPR and able to reflect the changes in cardiac function in the process of CPR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.