Abstract

Electron transport through a diblock molecule containing dithiophene moiety (Diheterocyclopentadiene Dithiophene Dithiol, DXDTDT) has been studied using non-equilibrium Green’s function approach combined with density functional theory. I-V characteristics of five molecular junctions were calculated. The results obtained show a modest current rectification of RR=1.7–3.4 with the highest rectification ratio (RR=3.4) was recorded for DBDTDT at 0.3V. A little negative differential resistance (NDR) behavior was reported for Diborole Dithiophene Dithiol (DBDTDT), Disilole Dithiophene Dithiol (DSiDTDT), and Diarisole Dithiophene Dithiol (DADTDT), with a peak-valley ratio (PVR) range from 1.00 to 1.21. Our findings have been interpreted in terms of transmission spectra and molecular projected self-consistent Hamiltonian.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.