Abstract

The glasses, in which oxygen was partially replaced with sulfur, have been synthesized in the Na2O-P2O5-Na2S system. The chemical and chromatographic analyses of the glasses synthesized have been performed. The temperature-concentration dependences of electrical conductivity of the glasses have been studied over a wide temperature range; the glass transition temperatures and the nature of charge carriers have been determined. The IR spectra and Raman spectra have been recorded at room temperature; the density and microhardness of the glasses and ultrasound velocity have been measured. A comparison of the electrical conductivities of the investigated glasses with those of the earlier studied glasses in the Na2O-P2O5 system has shown their fair coincidence. The introduction of sodium sulfide into the Na2O-P2O5 system is accompanied by an approximately threefold increase in electrical conductivity, although the concentrations of charge carriers (sodium ions) in the glasses amount to ∼17 and ∼26 mmol/cm3, respectively. The rise in electrical conductivity has been assumed to be caused by the increase in the degree of dissociation of polar structural chemical units including sulfide ions and by the higher mobility of sodium ions in the oxygen-free matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.