Abstract

Electrical conduction phenomena in polyimide (Kapton) films were studied with particular attention devoted to the separation of interface and bulk phenomena. The measurements were carried out with a variety of methods in the temperature range of 50 to 270 °C at electrical fields of 104 to 6×105 V/cm and at time intervals of up to 2×104 s after voltage application. Biased, two-side metallized samples yield, after sufficiently long voltage application, interface-controlled steady-state currents described by Schottky injection, modified by space-charge layers in the vicinity of the electrodes. The effective work function for aluminum-polyimide is estimated to be 1.7 eV in the temperature range between 100 and 270 °C. A distinct dependence of these currents on electrode material is observed. Bulk phenomena were studied on one-side metallized samples subject to positive-corona charge injection. At temperatures below 200 °C, significantly larger currents than those for biased, two-side metallized samples were observed. The current-voltage characteristics are ohmic at low fields and space-charge limited at high fields. From these data, trap modulated mobilities for positive carriers of 4×10−12 cm2/V s at 50 °C and 10−9 cm2/V s at 200 °C, ohmic bulk conductivities of 10−16 (Ω cm)−1 at 100 °C and 10−14 (Ω cm)−1 at 200 °C and an intrinsic carrier density of 5×1013 cm−3 independent of temperature are obtained. Activation energies for the mobility are between 0.2 and 0.8 eV for the temperature range between 50 and 200 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.