Abstract

This paper employed an electrical circuit simulator to investigate an electrodynamic suspension system (EDS) for passenger rail transport applications. Focusing on a null-flux suspension system utilizing figure-eight-shaped coils (8-shaped coils), the aim was to characterize the three primary electromagnetic forces generated in an EDS and to compare the findings with existing literatures. The dynamic circuit theory (DCT) approach was utilized to model the system as an electrical circuit with lumped parameters, and mutual inductance values between the superconducting (SC) coil and the upper and lower loops of the 8-shaped coil were calculated and inputted into the simulator. The results were compared with experimental data obtained from the Yamanashi test track. The comparison demonstrated close alignment between the theoretical expectations and the obtained experimental curves, validating the accuracy of the proposed model. The study highlights the advantages of this new approach, including faster computation times and efficient implementation of modifications. Overall, this work contributes to the ongoing development and optimization of null-flux suspension Maglev systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.