Abstract

One concept to build up hybrid electronic devices based on molecules or nanoparticles with rectifying properties is based on nanoscale objects that are immobilized between two electrodes composed of different metals forming asymmetric contacts. Following this concept, we introduce an optimized procedure to fabricate heterometallic nanoelectrodes with a separation of only 5 nm. Gold nanoparticles (AuNPs) with a diameter of 15 nm, stabilized with 4-mercaptophenylamine, were used to form electrode1-molecule/AuNP/molecule-electrode2 devices comprising at most a small number of AuNPs. Immobilization was performed by dielectrophoretic trapping. The molecular properties of 4-mercaptophenylamine are reflected in transition voltage spectroscopy features of the device. Cyclic current–voltage measurements on 20 functional devices revealed distinct differences in conductivities based on minor differences in device geometry. Analysis of the electron transport characteristics discloses that under these experimental conditions an asymmetric contact configuration alone is not sufficient for building up a molecule-based rectifier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.