Abstract

The forming process, which corresponds to the activation of the switching filament in Resistive Random Access Memory (RRAM) arrays, has a strong impact on the cells’ performances. In this paper we characterize and compare different pulse forming techniques in terms of forming time, yield and cell-to-cell variability on 4kbits RRAM arrays. Moreover, post-forming modeling during Reset operation of correctly working and over formed cells has been performed. An incremental form and verify technique, based on a sequence of trapezoidal waveforms with increasing voltages followed by a verify operation that terminates when the expected switching behavior has been achieved, showed the best results. This procedure narrows the post-forming current distribution whereas reducing the Reset switching voltage and the operative current. These advantages materialize in a better control of the cell-to-cell variability and in an overall time and energy saving at the system level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.