Abstract

The influence of the metamorphic buffer design and epitaxial growth conditions on the electrical and structural characteristics of metamorphic In0.38Al0.62As/In0.37Ga0.63As/In0.38Al0.62As high electron mobility transistor (MHEMT) nanoheterostructures has been investigated. The samples were grown on GaAs(100) substrates by molecular beam epitaxy. The active regions of the nanoheterostructures are identical, while the metamorphic buffer InxAl1 − xAs is formed with a linear or stepwise (by Δx = 0.05) increase in the indium content over depth. It is found that MHEMT nanoheterostructures with a step metamorphic buffer have fewer defects and possess higher values of two-dimensional electron gas mobility at T = 77 K. The structures of the active region and metamorphic buffer have been thoroughly studied by transmission electron microscopy. It is shown that the relaxation of metamorphic buffer in the heterostructures under consideration is accompanied by the formation of structural defects of the following types: dislocations, microtwins, stacking faults, and wurtzite phase inclusions several nanometers in size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.